KU Digital and AI Platform for Agriculture, Food, Biodiversity and Natural Resources

ทิศทางแหล่งทุนวิจัยต่อการสนับสนุนงานด้าน AI กับการเกษตร

โดย รองศาสตราจารย์ ดร.กล้าณรงค์ ศรีรอต

วันที่ 27 พฤษภาคม 2567 เวลา 09.00 – 16.00 น. ณ ห้อง Auditorium (306) ชั้น 3 สำนักบริการคอมพิวเตอร์

มหาวิทยาลัยเกษตรศาสตร์

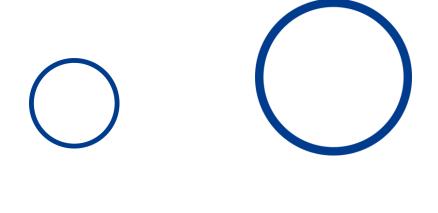
1. บทน้ำ

2. AI กับการเกษตร

- การปรับปรุงพันธุ์
- ประเมินผลผลิต
- การเฝ้าระวัง (Monitoring)
- Soil
- Smart Farming

3. สรุป

- Agriculture
 - Genome Sequenced
 - Al Breeding Program

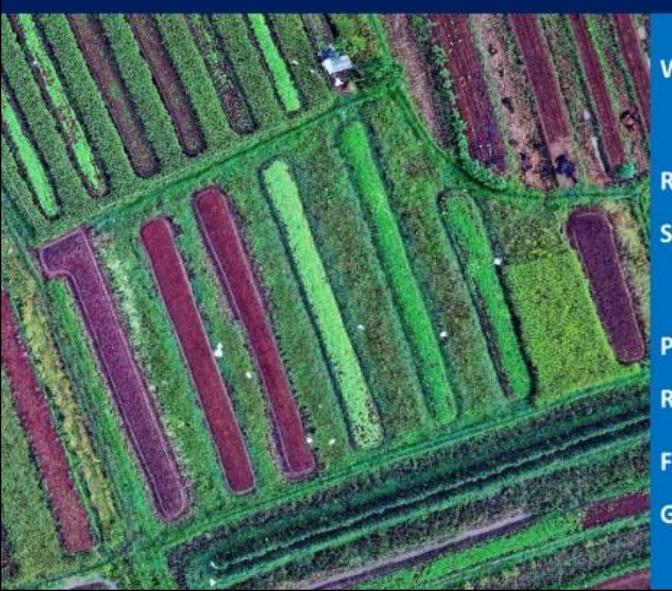


Benson Hill developed an <u>AI powered</u>, <u>predictive breeding</u> platform (CropOS).

- Reduces new variety time to market by 50% to 75%.
- Demonstrated <u>yield increases of 12% to 15% in corn.</u>

BENSON HILL

BENSON HILL AWARDED AI-BASED SOLUTION OF THE YEAR **HONORS AT AGTECH BREAKTHROUGH AWARDS**


IBM Watson Decision Platform for Agriculture Using A.I. to Aid in Decision Making from Farm to Fork

Dan Wolfson, IBM Distinguished Engineer Dir. Data & Analytics IBM Watson Media & Weather

Where IBM is using Artificial Intelligence & Advanced Analytics for Ag Decision Support

Weather: IBM GRAF Weather Model

Seasonal Probabilistic

Alerts

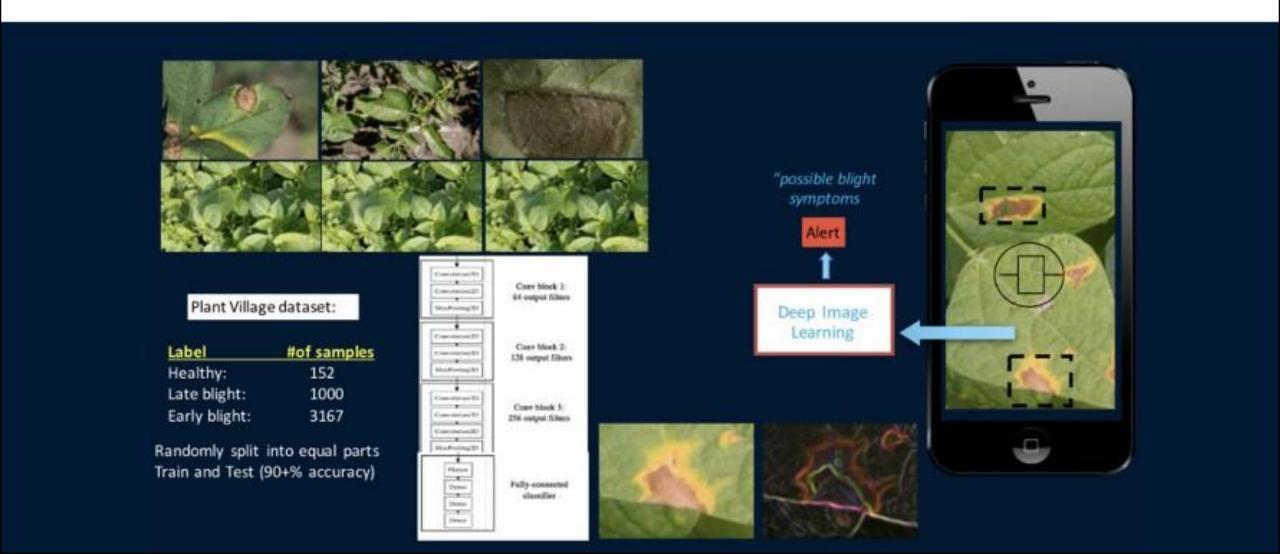
Remote Imagery: Crop Stress

Soil: Soil Temp/ Moisture

Soil Tests

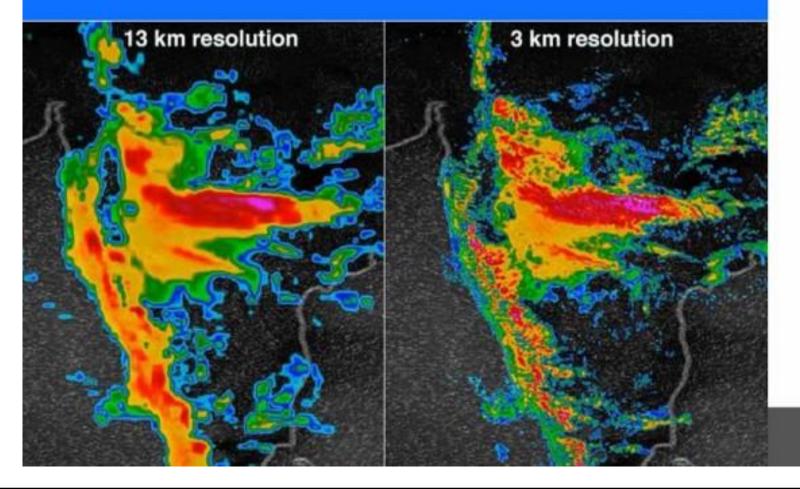
Auto Field Boundaries

Pest and Disease: Risk and Identification


Risk Management: Crop Type Identification

Farm Operations: Operations Dashboard

Geospatial Analytics: Geo-spatial Analytics


Potato: Yield, Pest & Disease

In addition to in-season Potato Yield Forecast, we have experience with Early & Late Potato Blight Disease and with Whitefly Pest.

BM GRAF Next Generation Weather Model

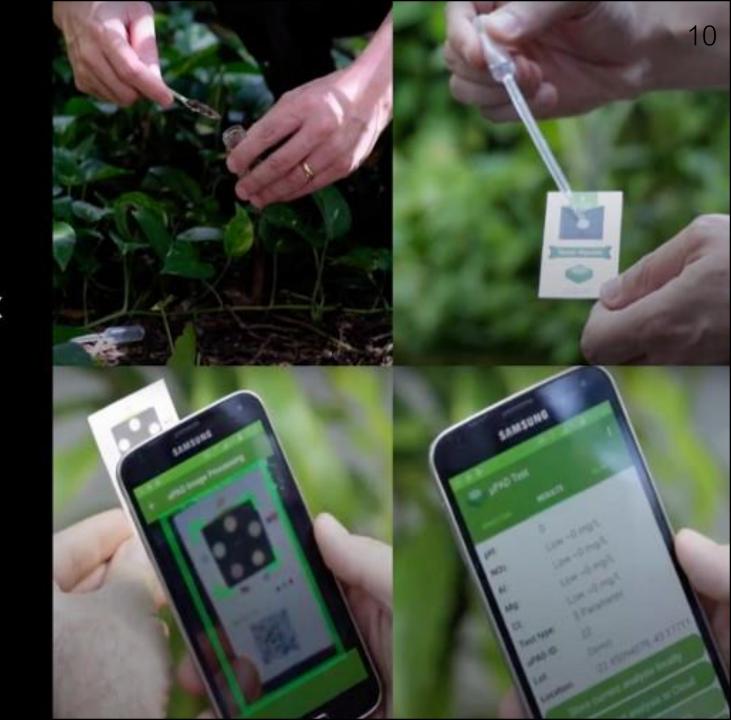
Model for Prediction Across Scales (MPAS)

Driven by IoT data including:

- 20M barometric pressure sensors
- Temperature and wind data from commercial aircraft, radars, satellites, and ground observations

Powered by:

 Purpose-built IBM super computers utilizing parallel processing

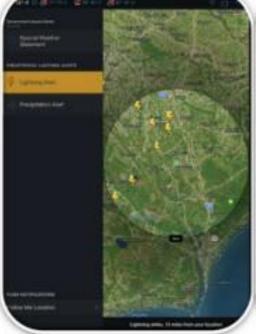

Resulting in:

- 3X-5X resolution and frequency improvement in global forecasting
- Ability to resolve individual thunderstorms

Soil Management

Soil Management is critical to crop yield and quality. Yet traditional methods are complex and time consuming.

AgroPad is Al-powered technology to help farmers check soil and water health.


NDVI Crop Health

Soil Moisture & Temperature @ 5 depths

0.5km Weather + Alerts

Yield Forecast

Operations Dashboard – actionable insights that influence crop decisions

Soil moisture and temperature for irrigation and soil-based nutrients

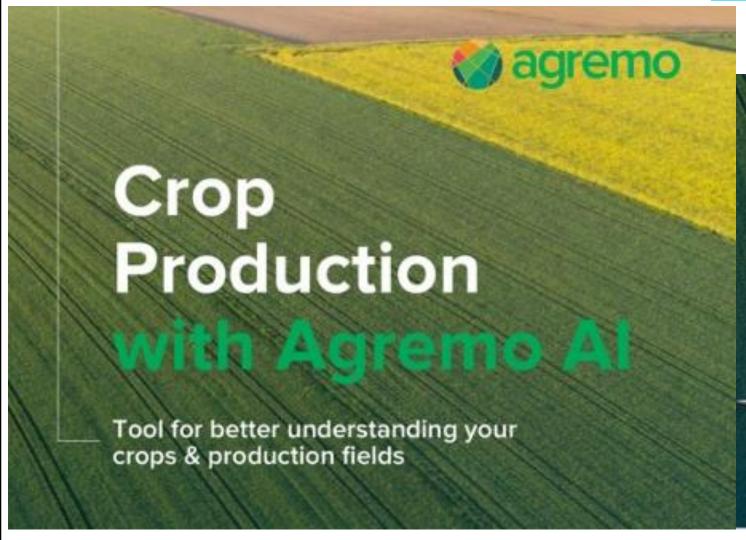
Crop stress to identify geolocations requiring scouting

Weather alerts and forecast for spraying and harvest

Pest & disease for eradication plan

Yield projection for trading timing

สวทช. จับมือ IBM ร่วมกับกลุ่มมิตร ผล นำ Al พลิก โฉมการทำไร่อ้อย...



Mitr Phol Pioneers Al to Modernize Thai Sugar...

AI กับการเกษตร

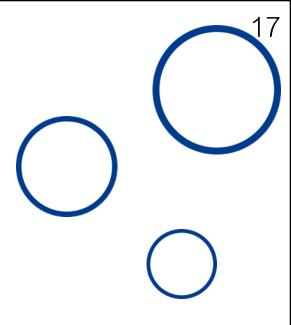
Track crop development through the season,

create spraying maps, and understand yield zones.

Agremo – Al Crop analytics Tailored for Ag professionals

Proceedings and Recommendations


National Workshop on


Artificial Intelligence

in Agriculture

30-31 July, 2018

NASC Complex, New Delhi

Organized by

ICAR-IASRI New Delhi

ICAR-NAARM Hyderabad

ICAR-IIWM Bhubaneswar

AI กับการเกษตร

การปรับปรุงพันธุ์

Program for plant breeding

- 1) Data analysis
- 2) Prediction modeling
- 3) Genetic optimization
- 4) Speeding up the breeding process
- 5) Enhancing precision breeding

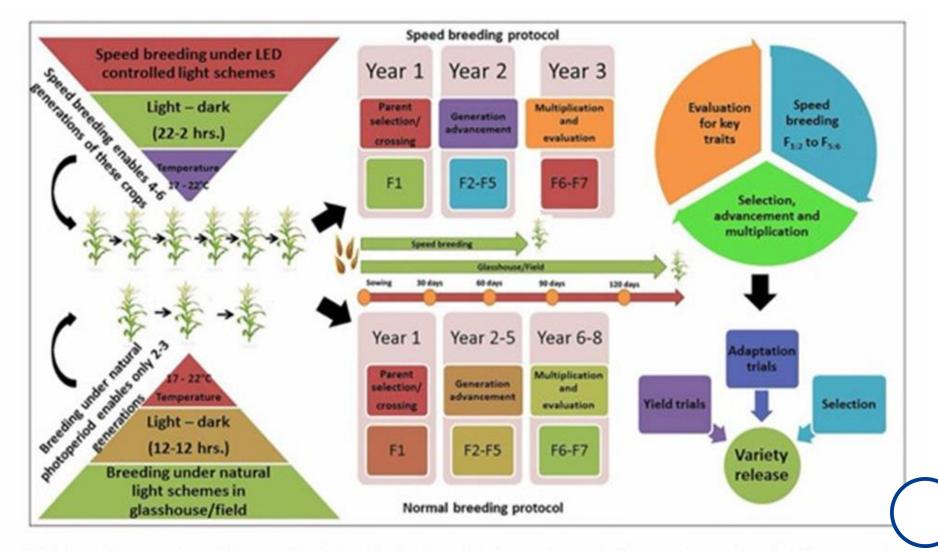


Fig. 1 An outline of speed breeding protocol and its implication for accelerating breeding cycles for improving growth and yield as compared to the conventional breeding approach under regular photoperiod

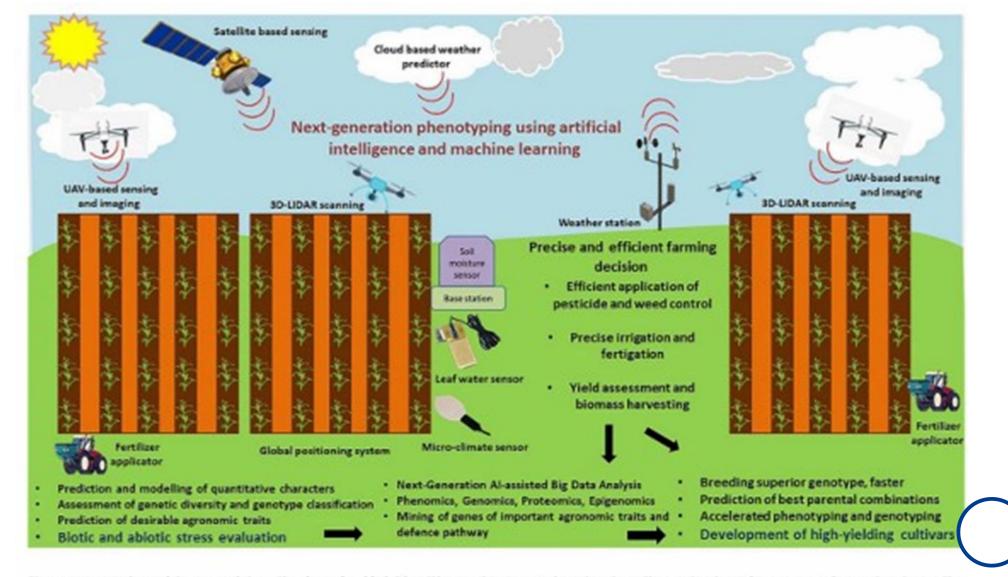


Fig. 2 An overview of the potential application of artificial intelligence in augmenting plant breeding technology for easy, precise, and early prediction of genotypes/parental combinations for varietal development

Crops	Speed breeding technique	Days to flowering	Generation achieved/year	Selection method	Trait enhanced	Refer
Glycine max L.	Photoperiod incandescent lights) and temperature	21	5	Single pod descent	Production of recombinant inbred lines	[56]
Arabidopsis thaliana L.	Photoperiod (LED light) and tem- perature, growth regulators	20-26	10		Shortening of the genera- tion time	[57]
Arachis hypo- gaea L.	Photoperiod (PAR light), gas heating	25	4	Single seed descent	Advancement of early gen- eration breeding material	[58]
Triticum aesti- vum L., Hordeum vulgare L.	Photoperiod (LED light) and tem- perature, growth regulators, embryo rescue	24-36	9	Single seed descent	Rapid production of seg- regating populations and pure lines	[59]
Sorghum	Photoperiod (LED light), tempera- ture and immature seed germination	40-50	6	Single seed descent	Rapid development of high yielding variety	[60]
Vicia Faba L., Lens culinaris L.	Photoperiod (LED light) and tem- perature, growth regulators	29-32, 31-33	7,8	Single pod descent	Early flowering and seed development	[61]
Amaranthus. spp	Photoperiod (LED light) and temperature	28	6	Single seed descent	Rapid production of segre- gating populations	[62]
Pisum sativum L.	Photoperiod (LED light) and growth regulators	33	5		Development of recombi- nant inbred lines	[63]
Oryza sativa L.	Photoperiod (LED light), temperature	75-85	4	Single seed descent	Rapid development of high yielding variety	[64]
Trifolium subter- raneum L	Photoperiod incandescent lights) and temperature, growth regulators	32-35	6	Single seed descent	Rapid development of bi- parental and multi-parental populations	[65]
Triticum aesti- vum L.	Photoperiod incandescent lights) and temperature, embryo culture	20-25	8	Single seed descent	Production of recombinant inbred lines	[66]
Brassica napus L.	Photoperiod (LED light) and temperature	73	4	Single seed decent	Pod shattering resistance	[5]
Cajanus cajan L.	Photoperiod (LED light), tempera- ture and immature seed germination	50-56	4	Single pod descent	Development of photoperi- oid insensitive lines	[67]
Pisum sativum L.	Photoperiod (LED light), tem- perature, growth regulators and micro-nutrients	18-26	5	Single seed descent	Production of recombinant inbred lines	[68, 69]
Triticum aesti- vum L., Triticum duram L., Hordeum vulgare	Photoperiod (LED light) and temperature	37	6-7	Single seed descent	Biotic stress tolerance and development of pure lines	[5, 6, 70]

Access through your institution

Purchase PDF

review

Show more V

Jun Bao a c, Qiuju Xie b c 🙎 🖾

Add to Mendeley % Share 55 Cite

https://doi.org/10.1016/j.jclepro.2021.129956 >

Journal of Cleaner Production

Volume 331, 10 January 2022, 129956

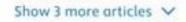
Artificial intelligence in animal

farming: A systematic literature

Get rights and content 7

Recommended articles

Identification of discriminating behavioural and movement...


Preventive Veterinary Medicine, Volume 1...
L. Riaboff, ..., A. Madouasse

Using artificial intelligence for modeling of the realistic animal...

Computer Standards & Interfaces, Volum... Ertan Turan, Gürcan Çetin

Sequential air pollution emission estimation using a hybrid deep...

Journal of Cleaner Production, Volume 37... Qiuju Xie, ..., Ping Zheng

Article Metrics

Abstract

Some scientific researches have been conducted recently based on

According to the literature review, a systematic application involving the Basic data collection devices, data processing, and smart algorithms needs to Be developed to facilitated the overall animal farming. Especially, the costless IoT based data collection system and high time-efficiency AI models were very necessary to achieve a smart animal farming.

ประเมินผลผลิต

CROP YIELD

PREDICTION

Agricultural Crop Yield Prediction Using Artificial Neural Network Approach

Miss.Snehal S.Dahikar¹, Dr.Sandeep V.Rode²

PG Student (EXTC), Dept. Of EXTC, Sipna College of Engineering, Amravati, Maharashtra, India¹
Dr. Dept. Of EXTC, Sipna College of Engineering, Amravati, Maharashtra, India²

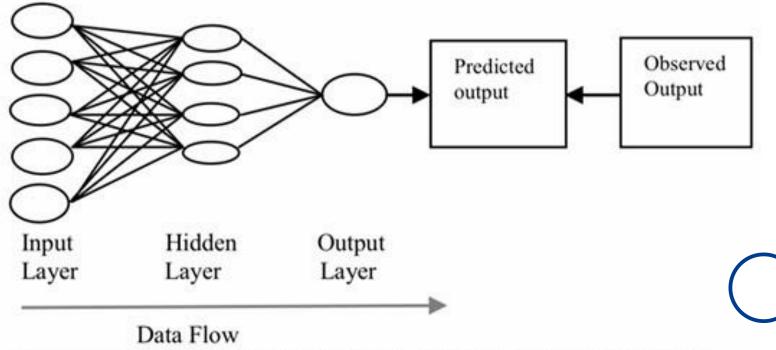
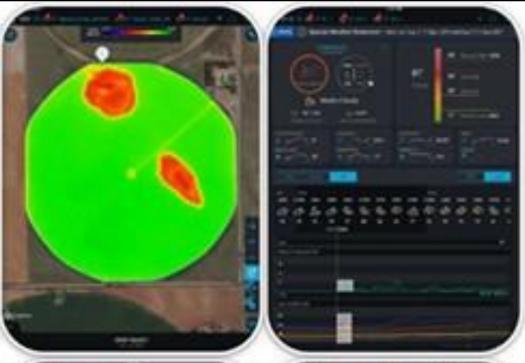



Fig 1.Layer and connection of a feed-forward back-propagating ANN.

NDVI Crop Health

Soil Moisture & Temperature @ 5 depths

Precision 0.5km Weather + Alerts

Yield Forecast

Operations Dashboard – actionable insights that influence crop decisions

Soil moisture and temperature for irrigation and soil-based nutrients

Crop stress to identify geolocations requiring scouting

Weather alerts and forecast for spraying and harvest

Pest & disease for eradication plan

Yield projection for trading timing

การเฝ้าระวัง (Monitoring)

ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue

JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

AI IN FARMING AND CROP MONITORING

Karthik Madnal¹, Abhishek Singh², Asst. Prof. Neeta Ranade³

- 13 Keraleeya Samajam's Model College, Khambalpada Road, Thakurli, Dombiyli (East), Kanchangaon, Maharashtra
- ³ Guide, Keraleeya Samajam's Model College, Khambalpada Road, Thakurli, Dombivli (East), Kanchangaon, Maharashtra

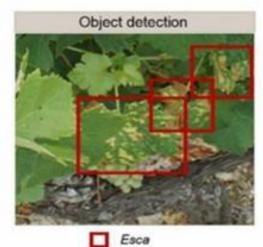
ABSTRACT:

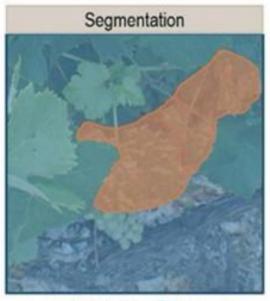
1 of AARTIFICIAL INTELLIGENCE IN AGRICULTURE: CROP MONITORING AND DISEASE DETECTION

Section A-Research paper

ARTIFICIAL INTELLIGENCE IN AGRICULTURE : CROP MONITORING AND DISEASE DETECTION

VIDHYA S1 SAMUNDEESWARI D2 MAHALAKSHMI M1


Assistant Professor, Department of S&H (Mathematics), RMK College of Engineering and Technology, Puduvoyal, India


²Assistant Professor, Department of S&H(Mathematics), Panimalar Engineering College, Chennai, India

3UG Student ,RMK College of Engineering and Technology, Puduvoyal, India

Section A-Research paper

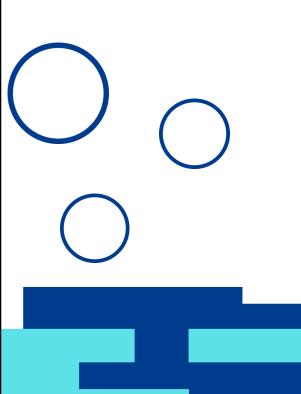

Esca: Positive Negative

Figure 2: Convolutional Neural Networks for the Automatic Identification of Plant Diseases Accessed 17 April 2022

2.3 Sensors

Agricultural sensors are sensors that are utilized in smart farming. These sensors give information that helps farmers monitor and optimize crops by allowing them to adjust to changes in the environment. Weather stations, drones, and agricultural robots all have these sensors attached. They can be controlled using dedicated smartphone applications. They may be controlled directly through WiFi or via cellular towers and operated using mobile phones and also used in weather stations. Sensors in this system provide information Microorganisms for Sustainability 47
Series Editor: Naveen Kumar Arora

Aditya Khamparia Babita Pandey Devendra Kumar Pandey Deepak Gupta *Editors*

Microbial Data Intelligence and Computational Techniques for Sustainable Computing

1	The Contribution of Artificial Intelligence to Drug Discovery: Current Progress and Prospects for the Future Umesh Gupta, Ayushman Pranav, Anvi Kohli, Sukanta Ghosh, and Divya Singh	1
2	Prediction of Plant Disease Using Artificial Intelligence Manoj Ram Tammina, K. Sumana, Pavitar Parkash Singh, T. R. Vijaya Lakshmi, and Sagar Dhanraj Pande	25
3	Computer Vision-based Remote Care of Microbiological Data Analysis	49
4	A Comparative Study of Various Machine Learning (ML) Approaches for Fake News Detection in Web-based Applications Mahabub Hasan Mahalat, Sushree Bibhuprada B. Priyadarshini, Sandip Swain, Shobhit Sahoo, Atish Mohapatra, and Mangaldeep Das	59
5	Analytics and Decision-making Model Using Machine Learning for Internet of Things-based Greenhouse Precision Management in Agriculture	77
6	DistilBERT-based Text Classification for Automated Diagnosis of Mental Health Conditions	93
7	An Optimized Hybrid ARIMA-LSTM Model for Time Series Forecasting of Agricultural Production in India Babita Pandey, Arvind Shukla, and Aditya Khamparia	107

SOIL

Corpus ID: 214676139

Soil Health Monitoring System using AI

Prof. A. V. Deorankar, Ashwini A. Rohankar, Pg

Scholar •

Published 2020 •

Environmental Science, Agricultural and Food Sciences,

Computer Science •

Journal of emerging technologies and innovative research

University Kasdi Merbah– OUARGLA Faculty of New Technologies of Information and Communication

Department of Computer Science and Information Technology

Field: Mathematics and Computer Science

Sector: Computer Science

Specialty: Fundamental Computer Science

Final Project Report

For obtaining the Master's degree in Computer Science

Theme:

Soil recognition and features measurement using AI

A Review on Applications of Artificial Intelligence for Identifying Soil Nutrients

September 2023

September 2023

DOI: 10.1007/978-3-031-43605-5_6

In book: Agriculture-Centric Computation (pp.71-86)

Authors:

Shagun Jain Delhi Technological University

Smart Farming

Innovative and Transformative Smart Farming using Artificial Intelligence,

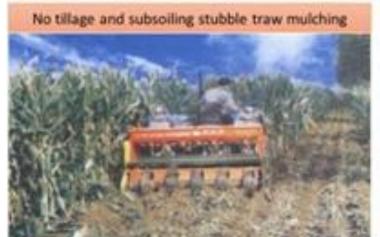
Indira Gandhi agriculture University, Raipur

Expert Group Meeting on Harnessing Innovative Technologies to Advance Green Transformation for Sustainable Development in North and Central Asia

Leveraging mechanization-based innovation and technologies for sustainable and climate-smart agriculture in North and Central Asia

Qiang Li, National Programme Officer, Centre for Sustainable Agricultural Mechanization (CSAM), ESCAP

27 March 2024


Climate Change Impacts

Economic Impacts

Social Impacts

Examples of Mechanization-based Technologies and Practices

Integration of Digital Devices and Artificial Intelligence (AI)

- Digital devices such as smartphones, tablets, and IoT sensors play a pivotal role in modern agriculture.
- They enable farmers to access real-time data, make informed decisions, and optimize resource use.
- Al could help agriculture by enabling predictive analytics, automation, and providing some recommendations.
- Al-powered tools could help to analyze data to provide valuable insights for farmers.

สรุป

